Diffuser optimum Imbibition

Hilary Ockendon ¹, Narenee Mewalal ², Bekithemba Sibanda ³, Enock Mwenitete ⁴ Industry Representative: Richard Loubser February 11, 2022

Mathematics Industry Study Group Study Group

Introduction	Model		Conclusion
00000	0000000	00	0000

OUTLINE

- 1. Introduction
- 2. Model
- 3. Discussion
- 4. Conclusion

Introduction

Introduction	Model	Discussion	Conclusion
0000			

INTRODUCTION

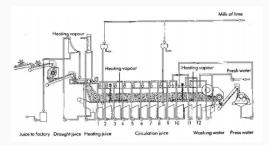


Figure 1: Schematic diagram of a diffuser

Introduction	Model 0000000	Discussion OO	Conclusion

- sugar cane is shredded to expose sap or juice.
- it is then fed into the diffuser and travels along a conveyor belt.
- Fresh water is added on the opposite side to wash the sugar containing juice out of the shredded cane.
- Water added needs to be evaporated before the sugar can be crystallized.
- This evaporation requires energy that comes from burning fuel in a boiler.
- Increase in production cost.

Introduction	Model	Discussion	Conclusion
○○○●○	00000000	OO	

THE PROBLEM

- · Need to reduce imbibition to save energy in the evaporator
- It has long been argued that reducing imbibition inevitably reduces extraction
- Can proper diffuser control mitigate the impact of reducing imbibition?

Introduction	Model	Discussion	Conclusion
00000			

RESEARCH QUESTIONS

- Is the trend of reducing extraction an inevitable consequence of reducing imbibition
- Can recycle be used to mitigate the effect of using less imbibition?

Model

Introduction	Model O●OOOOOO	Discussion OO	Conclusion

COMPARTMENTAL MODEL

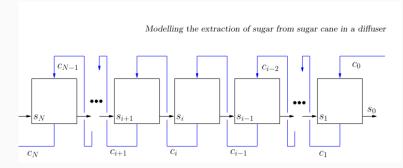


Figure 2: Schematic diagram of the model

Introduction	Model	Discussion	Conclusion
00000	000000	00	0000

DISCRETE MODEL

- Used to track sucrose concentration *C* in the juice and *S* in the shredded cane.
- we measure concentrations in $tonnes/m^3$.
- The *i*th compartmental is supplied with a volume flux *Q*_v with sucrose concentration *C*_{*i*-1} from the compartment on the right.
- A volume flux of Q_h with sucrose concentration S_i is supplied from the left.
- The fluxes are related to the vertical, *V* and horizontal, *U* velocities by:

 $Q_h = Uhd$ $Q_v = Vld$

Introduction	Model ○○○●○○○○	Discussion OO	Conclusion
Model			

• The fluxes in and out balances, we obtain the equations:

$$Q_h(S_i - S_{i-1}) = \kappa_1(S_i - C_{i-1})$$
 (1)

$$Q_v(C_i - C_{i-1}) = \kappa_1(S_i - C_{i-1})$$
 (2)

for
$$i = 1, 2, ..., N$$

Where i represents compartments

• $\kappa_1(m^3/hr)$ is the transfer coefficient of sucrose from the shredded cane to the juice.

Introduction	Model ○○○○●○○○	Discussion OO	Conclusion

MODEL

In order to solve equations 1 and 2 we take:

$$C_i = A + B\lambda^i$$
 (3)
 $S_i = D + E\lambda^i$ (4)

We set:

$$C_0 = 0$$
$$A = D$$

Thus:

$$A = -B = D$$

Introduction	Model ○○○○○●○○	Discussion OO	Conclusion
Model			

The diffuser typically consists of 12-14 compartments. We take N = 12 to be number of compartments and fix $S_N = \Sigma$

Substituting the solutions into equations 1 and 2 we get:

$$E(1 - \frac{1}{\lambda}) = m(E - \frac{B}{\lambda})$$

$$B(1 - \frac{1}{\lambda}) = p(1 - \frac{B}{\lambda})$$
(5)
(6)

Where $m = \frac{\kappa_1}{Q_h}$ and $p = \frac{\kappa_1}{Q_v}$

Introduction	Model ○○○○○○●○	Discussion OO	Conclusion

Model

$$B = \frac{p\Sigma}{m\lambda^{N} - p}$$
(7)
$$E = \frac{m\Sigma}{m\lambda^{N} - p}$$
(8)
$$\sum_{\lambda = 1 - p}$$
(7)

$$\lambda = \frac{1 - p}{1 - m} \tag{9}$$

We are now able to to obtain the solution for (1) and (2) to be:

$$\frac{C_i}{S_N} = \frac{p(\lambda^i - 1)}{m\lambda^N - p} \tag{10}$$

$$\frac{S_i}{S_N} = \frac{m\lambda^i - p}{m\lambda^N - p} \tag{11}$$

000000 00 00 00 00	Introduction	Model	Discussion	Conclusion
	00000	0000000	00	0000

PLOT OF THE MODEL

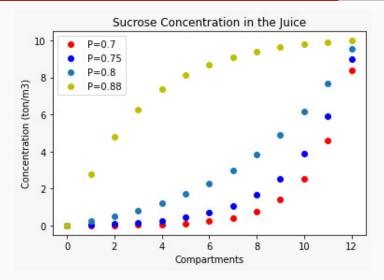


Figure 3: Sucrose concentration

Discussion

Introduction	Model	Discussion	Conclusion
		00	

- Figure 3 above shows the concentration of sucrose in the juice for varying values of P.
- Note that P =
 ^{κ1}/_{Vld}. We do not have a value for κ1, the transfer coefficient.
- However there is an inverse relationship between p and V.
- An increase in p results in decrease in V which subsequently results in a decrease in concentration of sugar in the juice.

Conclusion

Introduction	Model	Discussion	Conclusion
	0000000	OO	O●OO

CONCLUSION

- Thus we have shown that the reduced imbibition does impact extraction efficiency.
- The Question of whether recycle can be used to mitigate the effect of reduced imbibition is currently a work in progress and will be presented in the final report.

Introduction	Model	Discussion	Conclusion
	00000000	OO	○○●○

REFERENCES

- C. Breward, G. Hocking, H. Ockendon, C. Please, D. Schewendeman, Modelling the extraction of sugar from sugar cane in a diffuser.
- MISG 2012. Flow through sugarcane
- L. Soura, N.S. Barbosa, P.A. Santigo, P. Selghi. Modelling a multi-stage Diffuser for sucrose extraction in sugar cane bio-refineries.

Introduction	Model	Discussion	Conclusion
00000	0000000	00	0000

Thank you!